GPU VIRTUALIZATION
WITH POWER PROCESSOR

Federico Silla
Universitat Politècnica de València
REMOTE GPU VIRTUALIZATION WITH POWER PROCESSOR

Federico Silla
Universitat Politècnica de València
Heterogeneous Clusters
Heterogeneous2 Clusters
What is remote GPU virtualization?
Basics of GPU computing

Remark:
GPUs can only be used within the node they are attached to

Basic behavior of CUDA

Application

CUDA libraries

GPU
Remark:
GPUs can only be used within the node they are attached to.
A different approach: remote GPU virtualization

A software technology that enables a more flexible use of GPUs in computing facilities

No GPU

Network

rCUDA … remote CUDA

rCUDA is a development by Universitat Politecnica de Valencia
Basics of rCUDA

Access to remote GPU is transparent to applications: no source code modification is needed.

rCUDA is a development by Universitat Politecnica de Valencia.
Basics of rCUDA

Access to remote GPU is transparent to applications: no source code modification is needed.

rCUDA is a development by Universitat Politecnica de Valencia.
rCUDA envision

- **rCUDA allows a new vision** of a GPU deployment, moving from the usual cluster configuration …

… to the following one:
Heterogeneous2 environments
rCUDA availability

rCUDA is available for the x86, POWER and ARM processors.
Performance of rCUDA on POWER systems
Several testbeds used

CUDA

rCUDA client

#1

rCUDA server

#2

network fabric is EDR InfiniBand

#3

x86 @ 2.1 GHz
DDR3 1600 MHz

x86 @ 3.5 GHz
DDR4 2400 MHz
Performance of data movements to/from GPU

CUDA

rCUDA
Performance of data movements to/from GPU

- **H2D**
 - CUDA Minsky
 - rCUDA Minsky-EDR-Minsky
 - rCUDA x86 @ 2.1GHz -EDR-Minsky
 - rCUDA x86 @ 3.5GHz -EDR-Minsky

- **D2H**
 - CUDA Minsky
 - rCUDA Minsky-EDR-Minsky
 - rCUDA x86 @ 2.1GHz -EDR-Minsky
 - rCUDA x86 @ 3.5GHz -EDR-Minsky

Higher is better
Performance of data movements among GPUs

Higher is better
Application performance

Several applications have been analyzed in this study:

1. BarraCUDA
2. CUDA-MEME
3. CUDASW++
4. GPU-Blast
5. Gromacs
6. GPU-LIBVSM
7. Magma
8. NAMD
Unfortunately, we could not run all the applications in the Minsky system:

1. BarraCUDA: this application includes intrinsics headers
2. CUDA-MEME: successfully compiled and executed
3. CUDASW++: this application includes intrinsics headers
4. GPU-Blast: we were not able to compile it
5. Gromacs: successfully compiled and executed
6. GPU-LIBVSM: successfully compiled and executed
7. Magma: successfully compiled and executed
8. NAMD: we were not able to compile it
Application performance

Graph showing execution times for various applications and configurations:
- **MAGMA**
- **GPU-LIBSVM (1)**
- **GPU-LIBSVM (2)**
- **CUDA-MEME**
- **GROMACS**

CUDA Minsky
Minsky-EDR-Minsky
rCUDA x86 @ 2.1GHz -EDR-Minsky
rCUDA x86 @ 3.5GHz -EDR-Minsky
Throughput instead of performance
One rCUDA box serves multiple clients
One rCUDA box serves multiple clients

1. BarraCUDA
2. CUDA-MEME
3. CUDASW++
4. GPU-Blast
5. Gromacs
6. GPU-LIBVSM
7. Magma
Get a free copy of rCUDA at http://www.rcuda.net
More than 900 requests world wide

@rcuda_

rCUDA is a development by Universitat Politècnica de València, Spain
Funded by Agencia Valenciana de la Innovación, Generalitat Valenciana